280 research outputs found

    Nonlinear Vibrations and Chaos in Rectangular Functionally Graded Plates with Thermo-mechanical Coupling

    Get PDF
    We analyze the nonlinear dynamics of a simply supported, rectangular, and functionally graded plate in terms of a newly derived coupled system of thermo-elasticity and energy equations, which is then expanded here in derivations and explored for chaotic responses through a parameter study in the state space. The plate properties vary linearly in thickness. Three-dimensional stress-strain relations are considered in general case and nonlinear strain-displacement relations are deployed to account for the plate’s large deflection. A lateral harmonic force is applied on the plate, and there is a heat generation source within it and the surfaces are exposed to free convection. By integrating over the thickness, four new thermal parameters are introduced, which together with the midplane displacements constitute a system of seven partial differential equations. These equations are changed into ordinary differential equations in time using Galerkin’s approximation and solved by using the 4th order RungeKutta method. Finally, a parameter study is performed and the appropriate conditions resulting in chaotic solutions are determined by using numerical features such as the Lyapunov exponent and power spectrum

    Zonal jets in the Southern Ocean: a semi-analytical model based on scale separation

    Get PDF
    A reduced-order semi-analytic model of multiple zonal jets in the Southern Ocean is proposed based on the statistical approach and scale decomposition. By introducing two dominant scales in the vorticity equation, the model describes the large-scale and mesoscale dynamics using the explicit momentum dissipation in the horizontal and vertical directions. For validation and physical insights, the results of the reduced-order model are compared with solutions of two eddy-resolving ocean models: i) a realistic primitive-equation HYCOM (HYbrid Coordinate Ocean Model) simulation of the Southern Ocean and ii) an idealized quasi-geostrophic model of a shear-driven channel flow

    Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems

    Get PDF
    The new two-time-level dispersion improved CABARET scheme is developed as an upgrade of the original CABARET for improved wave propagation modelling in multiple dimensions and for nonlinear conservation laws including gas dynamics. The new upgrade retains many attractive features of the original CABARET scheme such as shock-capturing and low dissipation. It is simple for implementation in the existing CABARET codes and leads to a greater accuracy for solving linear wave propagation problems. A non-linear version of the dispersion-improved CABARET scheme is introduced to efficiently deal with contact discontinuities and shocks. The properties of the new linear and nonlinear CABARET schemes are analysed for numerical dissipation and dispersion error based on Von Neumann analysis and Pirrozolli's method. Numerical examples for one-dimensional and two-dimensional linear advection, the one-dimensional inviscid Burger's equation, and the isothermal gas dynamics problems in one and two dimensions are presented

    Excitation of the Earth's Chandler wobble by a turbulent oceanic double-gyre

    Get PDF
    We develop a layer-averaged, multiple-scale spectral ocean model and show how an oceanic double-gyre can communicate with the Earth's Chandler wobble. The overall transfers of energy and angular momentum from the double-gyre to the Chandler wobble are used to calibrate the turbulence parameters of the layer-averaged model. Our model is tested against a multilayer quasi-geostrophic ocean model in turbulent regime, and base states used in parameter identification are obtained from mesoscale eddy resolving numerical simulations. The Chandler wobble excitation function obtained from the model predicts a small role of North Atlantic ocean region on the wobble dynamics as compared to all oceans, in agreement with the existing observations

    Fast spectral solutions of the double-gyre problem in a turbulent flow regime

    Get PDF
    Several semi-analytical models are considered for a double-gyre problem in a turbulent flow regime for which a reference fully numerical eddy-resolving solution is obtained. The semi-analytical models correspond to solving the depth-averaged Navier–Stokes equations using the spectral Galerkin approach. The robustness of the linear and Smagorinsky eddy-viscosity models for turbulent diffusion approximation is investigated. To capture essential properties of the double-gyre configuration, such as the integral kinetic energy, the integral angular momentum, and the jet mean-flow distribution, an improved semi-analytical model is suggested that is inspired by the idea of scale decomposition between the jet and the surrounding flow

    Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium citrinum

    Get PDF
    Purpose: To evaluate a green process for the extracellular production of silver (Ag) nanoparticles synthesized and stabilized using Penicillium citrinum isolated from soil.Methods: The pure colonies of Penicillium citrinum were cultured in Czapek dox broth. The supernatant of the broth was examined for the ability to produce silver nanoparticles. The reactions were performed in a dark compartment at 28 oC. After 24 h, the synthesized silver nanoparticles were filtered through a membrane filter (0.45 ƒÊ) and characterized by UV-visible spectroscopy, fluorescence spectroscopy, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy (FTIR) for particle size, shape and the presence of different functional groups in the nanoparticles.Results: The silver nanoparticles formed were fairly uniform in size with a spherical shape and a Zaverage diameter of 109 nm. FTIR spectra revealed the presence of amide linkage groups which were also found in the fungal extract itself.Conclusion: The current approach suggests that rapid synthesis of nanoparticles of silver nitrate would be suitable for developing a biological process for mass scale production of formulations.Keywords: Green synthesis, Penicillium citrinum, silver nanoparticles

    Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and Ritz-Galerkin Methods

    Get PDF
    To address the challenges with real-time accurate modeling of multi-segment continuum manipulators in the presence of significant external and body loads, we introduce a novel series solution for variable-curvature Cosserat rod static and Lagrangian dynamic method. By combining a modified Lagrange polynomial series solution, based on experimental observations, with Ritz and Ritz-Galerkin methods, the infinite modeling state space of a continuum manipulator is minimized to geometrical position of a handful of physical points (in our case two). As a result, a unified easy to implement vector formalism is proposed for the nonlinear impedance and configuration control. We showed that by considering the mechanical effects of highly elastic axial deformation, the model accuracy is increased up to 6%. The proposed model predicts experimental results with 6-8% (4-6 [mm]) mean error for the Ritz-Galerkin method in static cases and 16-20% (12-14 [mm]) mean error for the Ritz method in dynamic cases, in planar and general 3D motions. Comparing to five different models in the literature, our approximate solution is shown to be more accurate with the smallest possible number of modeling states and suitable for real-time modeling, observation and control applications

    Statistical analysis of high-speed jet flows

    Get PDF
    The spatiotemporal dynamics of pressure fluctuations of a turbulent jet flow is examined from the viewpoints of symbolic permutations theory and Kolmogorov-Smirnov statistics. The methods are applied to unveil hidden structures in the near-field of the two jets corresponding to the NASA SHJAR SP3 and SP7 experiments. Large Eddy Simulations (LES) are performed using the high-resolution Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) accelerated on Graphics Processing Units (GPUs). It is demonstrated that the decomposition of the LES pressure solutions into symbolic patterns of simpler temporal structure reveals the existence of some orderly structures in the jet flows. To separate the non-linear dynamics of the revealed structures from the linear part, the results based on the pressure signals obtained from LES are compared with the surrogate dataset constructed from the original data

    Application of Genetic Programming and Artificial Neural Network Approaches for Reconstruction of Turbulent Jet Flow Fields

    Get PDF
    Two Machine Learning (ML) methods are considered for reconstruction of turbulet signals corresponding to the Large Eddy Simulation database obtained by application of the high-resolution CABARET method accelerated on GPU cards for flow solutions of NASA Small Hot Jet Acoustic Rig (SHJAR) jets. The first method is the Feedforward Neural Networks technique, which was successfully implemented for a turbulent flow over a plunging aerofoil in (Lui and Wolf, 2019). The second method is based on the application of Genetic Programming, which is well-known in optimisation research, but has not been applied for turbulent flow reconstruction before. The reconstruction of local flow velocity and pressure signals as well as timedependent principle coefficients of the Spectral Proper Orthogonal Decomposition of turbulent pressure fluctuations are considered. Stability and dependency of the ML algorithms on the smoothness property and the sampling rate of the underlying turbulent flow signals are discussed

    Scalable and Transfer-Free Fabrication of MoS2/SiO2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000

    Get PDF
    We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS2) -silicon dioxide (SiO2) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS2 photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability of the cavity resonance wavelength across the entire emission band of MoS2 simply by variation of the photonic crystal periodicity. Device fabrication started by substrate-scale growth of MoS2 using chemical vapor deposition (CVD) on non-birefringent thermal oxide on a silicon wafer;it was followed by lithographic fabrication of a photonic crystal nanocavity array on the same substrate at more than 50% yield of functional devices. Our cavities exhibit three dominant modes with measured linewidths less than 0.2 nm, corresponding to quality factors exceeding 4000. All experimental findings are found to be in excellent agreement with finite difference time domain (FDTD) simulations. CVD MoS2 provides scalable access to a direct band gap, inorganic, stable and efficient emitter material for onchip photonics without the need for epitaxy and is at CMOS compatible processing parameters even for back-end-of-line integration;our findings suggest feasibility of cavity based line-narrowing in MoS2-based on-chip devices as it is required for instance for frequency-multiplexed operation in on-chip optical communication and sensing
    corecore